

# College Tour

uu.nl/staff/jmvandenakker

### GSNS – College Tour

### Dr. ir. Marjan van den Akker – Laurens Stoop MSc







## Background: Marjan van den Akker

### **Master Mathematics 1990** TU/e, specialization discrete mathematics

### PhD Mathematics 1994 TU/e, planning and scheduling, integer linear programming

## Modelling, simulation, optimization in Air Traffic Management

### Assistant/Associate professor Algorithms and Complexity, UU, 2001-• Scientific coordinator Utrecht Al & Mobility Lab

- Coordination master COSC
- Course Optimization for sustainability (COSC)
- transportation, green logistics

### uu.nl/staff/jmvandenakker

GSNS – College Tour

Research engineer, Netherlands Aerospace Centre NLR, 1995-2000

Research: algorithms for planning and scheduling, smart energy systems, public







## Background – Laurens Stoop

**Bachelor Aerospace Engineering, 2011** At TU Delft; to little theoretical depth

**Bachelor Physics and Astronomy, 2012-2016** UU, Particle physics and Cosmology

Master Climate Physics, 2016-2018 UU, Extreme impacts of weather, Atmospheric chemistry

PhD Research in Algorithmic data analysis & energy resources, 2018-UU, Combined Informatics & Energy Science

uu.nl/staff/jmvandenakker

GSNS – College Tour









## ACDC—ESM project Algorithmic Computing and Data-mining for Climate integrated Energy System Models

### **Transition to renewables** Increased weather dependence Adverse circumstances disrupt the grid

uu.nl/staff/jmvandenakker

### GSNS – College Tour





Koninklijk Nederlands Meteorologisch Instituut Ministerie van Infrastructuur en Waterstaat



### uu.nl/staff/LPStoop



STORAGE



## Assessment of future power systems, MvdA 1/3

How to deal with more renewables: Complement by other generators: flexibility? • Storage or transmission: expense, efficiency

- loss?

Are the scenarios with many renewables feasible and affordable?

**Solve Unit Commitment problem:** How to schedule the generators to produce the total demand at minimal cost?

uu.nl/staff/jmvandenakker

GSNS – College Tour

Tijd:

### Tells if there is unserved energy, or large cost





## **Optimization of Unit Commitment, MvdA 2/3**



### uu.nl/staff/jmvandenakker

### GSNS – College Tour



![](_page_5_Picture_8.jpeg)

![](_page_5_Picture_10.jpeg)

![](_page_6_Picture_0.jpeg)

## From Climate to Energy data, LS 1/3

![](_page_6_Figure_3.jpeg)

 Global patterns influence local weather • Uncertainty in climate change, shift in median and/or extremes

uu.nl/staff/jmvandenakker

### GSNS – College Tour

![](_page_6_Picture_10.jpeg)

![](_page_7_Picture_0.jpeg)

![](_page_7_Figure_7.jpeg)

GSNS – College Tour

![](_page_8_Picture_0.jpeg)

## ACDC—ESM goals

### Weather dependent generation & demand

![](_page_8_Picture_4.jpeg)

### **Generator Sets**

![](_page_8_Picture_6.jpeg)

uu.nl/staff/jmvandenakker

### GSNS – College Tour

![](_page_8_Picture_9.jpeg)

![](_page_8_Picture_10.jpeg)

![](_page_8_Picture_11.jpeg)

![](_page_8_Picture_12.jpeg)

![](_page_8_Picture_13.jpeg)

Koninklijk Nederlands Meteorologisch Instituut Ministerie van Infrastructuur en Waterstaat

![](_page_8_Picture_15.jpeg)

![](_page_8_Picture_16.jpeg)

Push the state-of-art to make this work

![](_page_8_Picture_19.jpeg)

![](_page_9_Picture_0.jpeg)

## **Optimization algorithms for Unit Commitment, MvdA 2/3**

![](_page_9_Figure_3.jpeg)

**NP-hard optimization problem!** We hope to go to European scale MIP is not fast enough

uu.nl/staff/jmvandenakker

GSNS – College Tour

![](_page_9_Picture_10.jpeg)

![](_page_10_Picture_0.jpeg)

## **Optimization algorithms for Unit Commitment, MvdA 3/3**

### **ILP and Dynamic programming**

![](_page_10_Figure_4.jpeg)

![](_page_10_Picture_5.jpeg)

![](_page_10_Figure_6.jpeg)

![](_page_10_Figure_7.jpeg)

### uu.nl/staff/jmvandenakker

GSNS – College Tour

t = 1

![](_page_10_Picture_11.jpeg)

![](_page_10_Picture_12.jpeg)

![](_page_11_Picture_0.jpeg)

## Finding high impact events, LS 3/3

![](_page_11_Figure_3.jpeg)

### Outlier detection algorithms can help with finding high impact events in climate data • Require moderation to suit the dataset size (~28TB)

### uu.nl/staff/jmvandenakker

### GSNS – College Tour

![](_page_12_Picture_0.jpeg)

## ACDC—ESM

### **Energy System Models**

### **Energy science**

uu.nl/staff/jmvandenakker

### GSNS – College Tour

![](_page_12_Picture_7.jpeg)

![](_page_12_Picture_8.jpeg)

![](_page_12_Picture_9.jpeg)

Koninklijk Nederlands Meteorologisch Instituut Ministerie van Infrastructuur en Waterstaat

![](_page_12_Picture_11.jpeg)

### **Optimization** algorithms

CS, Math

![](_page_12_Picture_15.jpeg)