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European Energy System

One directional system

Central control & modulation

Relies on large generators

Figure – Historical large scale electrical infrastructure. Image from International Energy Agency.
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European Energy System

Energy Transition to
renewable sources

Increased variability in
generation and demand

Complex bi-directional
network

Figure – Likely large scale electrical infrastructure. Image from International Energy Agency.
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Preparing for the future

Solve the Unit Commitment problem

How to schedule the generators to produce
the demand at minimal cost?

Upgrading and improving the grid

Many scenarios have to be considered

Large variability of weather

Risks; Load mismatch, blackout

NP-Hard optimization problem

Figure – European transmission network model, includes lines that are
planned and under construction. Image from Hörsch et al. [1].
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Preparing for the future

Outlier Detection
Outliers represent the most extreme events. Reduces the input,
while allowing for detailed modelling of the system.
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ERA5 Reanalysis Data

ERA5 Reanalysis Data

1950-2019

Hourly Resolution

0.25 degree resolution

Autocorrelated and
Heteroscedastic

Energy Conversion Models

Wind turbines onshore (WON),
Wind turbines offshore (WOF),
Solar Photovoltaic panels (SPV)

Figure – Example of ERA5 data. T2m during heatwave of 25th july 2019 13:00.
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Maximally Divergent Intervals (MDI) Algorithm

Introduced by Rodner et al. (2015) [2] to detect outliers in temporal data
Improved and Expanded to work for spatial-temporal data by Barz et al.
(2017-2018) [3][4]

Compares Distributions of Interval I with remaining data Ω
Divergence is the outlier score
Approach works for multivariate spatial-temporal data

Figure – Principle idea of the MDI algorithm. The distribution of the interval I is compared to the remaining data Ω. Image from Barz et al. (2018)[4]
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MDI: Context Embedding

Data is autocorrelated

Transform data point to phase space that is uncorrelated: Context Embedding

Figure – Examples of spatial and temporal context embedding. Images from Barz et al. (2017) [3].
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Experimental setup

Used to detect temporal outliers with context embedding

Outlier scores: Cross Entropy and Unbiased Kullback-Leibler

Multi-variate data (WON/WOF/SPV)

Experiment 1: Outliers on the entire region → tuning

Experiment 2: Climate Change Experiments

Experiment 3: Temporal Outliers and their Spatial Location → not presented
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Experiment 1: The European Region Cross Entropy

Figure – Top Cross Entropy Result Western Europe

An adverse weather system for the electricity system of the UK and Europe[5].
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Experiment 1: The European Region Cross Entropy

Figure – Top Cross Entropy Result Western Europe

An adverse weather system for the electricity system of the UK and Europe[5].
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Experiment 1: The European Region Unbiased Kullback-Leibler

Figure – Top Unbiased Kullback-Leibler Result Western Europe

Figure – Hurricane Daria, air pressure map
25-01-1990, Source KNMI
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Experiment 1: The European Region Events

Figure – Top 20 Cross Entropy Outliers

Summer Deficiency

Winter Surplus

Interval Length Preferance
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Experiment 2: Climate Change Experiment

Figure – Average Intensity of top 50 Cross Entropy Outliers. Total Energy generation over Western Europe used

Similar Multidecadal Variability detected by Wohland et al. [6].
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Summary

Application of tuned MDI on Energy-Climate data

Highlighting of Extreme Events for the energy sector
Events detected used as input for Energy System Models (Unit Commitment)

Assessment of adequacy and possible changes of risk during extreme events
Allows assessment of wider range of scenarios (climate & energy)

More information
On the ACDC-ESM project and other works, see: uu.nl/staff/LPStoop
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Experiment 3: Spatial Location Experiment

Figure – Four time steps of top Unbiased Kullback-Leibler Outlier 2010-2019 Total Energy Generation. Spatial Location of the Outlier Highlighted
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Experiment 3:
Spatial Location
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Experiment 1: Peak-and-Trough

Figure – Peak and Trough. Outlier rank 14 Western Europe Cross Entropy
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Experiment 1: The European Region Events

Figure – Top 20 unbiased Kullback-Leibler
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Other experiments: Preference for interval length CE

Figure – Correlation between outlier lengths and their scores under Cross Entropy
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Other experiments: Preference for interval length uKL

Figure – Correlation between outlier lengths and their scores under unbiased Kullback-Leibler Entropy
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Other experiments: Clustering

Clusters based on Temporal Mean. 5 Clusters

0

1

2

3

4

Cl
us

te
r N

um
be

r

20 Connected Clusters based on Temporal Mean
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Other experiments: Regions

Clusters based on Temporal Mean. 5 Clusters
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MDI: Complexity & spatial component

613,594 Hours

21.5 billion grid cells

Naive approach
O(N · L(N + L)) for the Gaussian model and O(N2 · L2) for KDE using Gaussian
kernels.

Cumulative sums
O(N · L2) for the Gaussian model and O(N2 + N · L2) for the KDE model.

Closed form solutions for Gaussian model

O(N · L)
Hotteling’s T2 Squared heuristic.
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MDI: Unbiased Kullback-Leibler

Kullback-Leibler Divergence bias towards smaller intervals

Unbiased KL Divergence:

DU−KL(I,Ω) := 2 · |I| · DKL(I,Ω)

Figure – Top detections on real time data using both regular and unbiased Kullback-Leibler divergence. Image from Barz et al. (2018) [4]
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MDI: Divergence Measures

Cross Entropy

H(p, q) = Ep[−log q]

How surprising is a drawn sample

Can be estimated empirically:

Kullback-Leibler Divergence

H(p, q) − H(p, p)

Can be estimated empirically:

Unbiased Kullback-Leibler

DCE(I,Ω) =
1
|I|

∑
i∈I

log pΩ(Xi)

DKL(I,Ω) =
1
|I|

∑
i∈I

log pI(Xi) − log pΩ(Xi)

DU−KL(pI , pΩ) := 2 · |I| · DKL(pI , pΩ)
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MDI: Hottelings T2 Interval Proposal Heuristic

Multivariate Generalization of Students T test

Point wise outlier score

Outlying intervals likely to have high point wise score

Start and end with high T2 gradient

Threshold value of the gradient proposes potentially outlying intervals
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MDI: Context Embedding Results

Figure – Comparison of results of MDI on synthetic data with and without time delay embedding, k=6, t = 2. Image from Barz et al. (2018) [4]
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MDI: Partial Autocorrelation

Figure – Partial Autocorrelation plots
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MDI: Seasonality

Seasonal Behaviour

Hourly Z score

Z =
X − µ

σ
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